Lecture 7: Sequences of independent random variables

1. Kolmogorov 0-1 law

Let X_{1}, X_{2}, \ldots be a sequence of independent random variables on (Ω, \mathcal{F}, P) with associated tail σ-algebra \mathcal{T} as defined in the last lecture. As mentioned earlier, many important events belong to \mathcal{T}. For example, one such class of events of interest in the context of the law of large numbers concerns the limiting behaviour of

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

Theorem 1.1. (Kolmogorov 0-1 law.) Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with σ-algebra \mathcal{T}. Then for any event $E \in \mathcal{T}$, either $P(E)=1$ or $P(E)=0$.

Proof. (Sketch) Let $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\mathcal{T}_{n}=\sigma\left(X_{n+1}, X_{n+2}, \ldots\right)$. Then by the independence of the X_{k}, \mathcal{F}_{n} and \mathcal{T}_{n} are independent and since $\mathcal{T} \subset \mathcal{T}_{n}, \mathcal{F}_{n}$ and \mathcal{T} are independent. Moreover $\bigcup_{n} \mathcal{F}_{n}$ and \mathcal{T} are independent. Next let $\mathcal{F}_{\infty}=\sigma\left(X_{1}, X_{2}, \ldots\right)$. Because $\mathcal{F}_{\infty}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right), \mathcal{F}_{\infty}$ and \mathcal{T} are independent. (This last point is not trivial and requires more rigorous treatment to arrive at a proper proof, as $\bigcup_{n} \mathcal{F}_{n}$ is not a σ-algebra in general.) But since $\mathcal{T} \subset \mathcal{F}_{\infty}, \mathcal{T}$ is independent of itself! Therefore, for $E \in \mathcal{T}, P(E)=$ $P(E \bigcap E)=P(E)^{2}$ and the result follows.

Exercise: Show that any \mathcal{T}-measureable random variable Z must be (almost surely) trivial (i.e. deterministic), in the sense that for some constant $c, P(Z=c)=1$.

For this reason σ-algebras with the $0-1$ property are called trivial.
Kolmogorov's 0-1 law shows that for independent sequences $\left(X_{n}\right)$, either

$$
\begin{aligned}
P\left(\lim _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \text { exists }\right) & =0 \\
\text { or } P\left(\lim _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \text { exists }\right) & =1
\end{aligned}
$$

and moreover, if the limit does exist, it must be constant. There are many other similar types of 0-1 laws but although they say that for a certain event $E, P(E)=0$ or 1 , they don't say which and deciding whether $P(E)=0$ or 1 is often a very difficult problem and many such problems remain open. In the case of

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

the question is settled by the strong law of large numbers.

2. Law of large numbers

First, a very useful preliminary result which involves a nice application of the dominated convergence theorem.
Lemma 2.1. Let X be a random variable with $E(X)=0$ and $E\left(|X|^{n}\right)<\infty$ for some $n \geq 1$. Then the following asymptotic expansion holds for the characteristic function ϕ of X :

$$
\phi(\theta)=\sum_{k=1}^{n} \frac{(i \theta)^{k} E\left(X^{k}\right)}{k!}+o\left(\theta^{n}\right) \quad \text { as } \theta \rightarrow 0 .
$$

Proof. For $n \geq 0$

$$
R_{n}(x)=e^{i x}-\sum_{k=1}^{n} \frac{x^{k}}{k!}
$$

Then $R_{0}(x)=e^{i x}-1$ so $\left|R_{0}(x)\right| \leq 2$. But also $R_{0}(x)=\int_{0}^{x} i e^{i y} d y$, so $\left|R_{0}(x)\right| \leq|x|$. Putting these together gives

$$
\left|R_{0}(x)\right| \leq \min (2,|x|)
$$

Next, note that for $n \geq 1$

$$
R_{n}(x)=\int_{0}^{x} i R_{n-1}(y) d y
$$

so by induction

$$
\left|R_{n}(x)\right| \leq \min \left(\frac{2|x|^{n}}{n!}, \frac{|x|^{n+1}}{(n+1)!}\right)
$$

Since $\phi(\theta)=E\left(e^{i \theta X}\right)$, we have

$$
\phi(\theta)=\sum_{k=1}^{n} \frac{(i \theta)^{k} E\left(X^{k}\right)}{k!}+E\left(R_{n}(\theta X)\right)
$$

It remains to prove that $E\left(R_{n}(\theta X)\right) \sim o\left(\theta^{n}\right)$.

$$
\left|E\left(R_{n}(\theta X)\right)\right| \leq E\left(\left|R_{n}(\theta X)\right|\right) \leq \theta^{n} E\left[\min \left(\frac{2|X|^{n}}{n!}, \frac{|\theta X|^{n+1}}{(n+1)!}\right)\right]
$$

The integrand inside $E(\cdot)$ on the right-hand side above is bounded above by $2|X|^{n} / n$! which has finite expectation by assumption and tends to 0 as $\theta \rightarrow 0$. Hence by dominated convergence

$$
\frac{\left|E\left(R_{n}(\theta X)\right)\right|}{\theta^{n}} \leq E\left[\min \left(\frac{2|X|^{n}}{n!}, \frac{|\theta X|^{n+1}}{(n+1)!}\right)\right] \rightarrow 0
$$

as $\theta \rightarrow 0$, or in other words, $E\left(R_{n}(\theta X)\right) \sim o\left(\theta^{n}\right)$.

Recall from Proposition 2.4 that $X_{n} \rightarrow X$ in probability implies $X_{n} \rightarrow X$ in distribution. The following is a converse of this result in the case where the limit X is a constant.

Lemma 2.2. Suppose that $X_{n} \rightarrow c$ in distribution, where c is a constant. Then $X_{n} \rightarrow c$ in probability.

Proof. This is left as an exercise.
Theorem 2.3. (Weak law of large numbers I.) Let X_{1}, X_{2}, \ldots be independent and identically distributed with $\mu=E\left(X_{1}\right)$ exists and is finite. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then

$$
\begin{align*}
& \frac{S_{n}}{n} \rightarrow \mu \quad \text { in distribution } \tag{2.1a}\\
& \frac{S_{n}}{n} \rightarrow \mu \quad \text { in probability. } \tag{2.1b}
\end{align*}
$$

Proof. We need only prove (2.1a) because (2.1b) follows from (2.1a) by Lemma 2.2. Let ϕ_{X} be the common characteristic function of the X_{k} and let ϕ_{n} be the characteristic function of S_{n} / n. Then

$$
\phi_{n}(\theta)=\prod_{k=1}^{n} E\left(e^{i \theta X_{k} / n}\right)=\phi_{X}(\theta / n)^{n} .
$$

As $n \rightarrow \infty$, Lemma 2.1 gives

$$
\phi_{X}(\theta / n)=1+i \theta \mu / n+o(1 / n)
$$

so that

$$
\phi_{n}(\theta)=(1+i \theta \mu / n+o(1 / n))^{n} \rightarrow e^{i \theta \mu}
$$

as $n \rightarrow \infty$. But $e^{i \theta \mu}$ is the characteristic function of the constant μ.
Theorem 2.4. (Weak law of large numbers II.) Let X_{1}, X_{2}, \ldots and S_{n} be as before. Suppose that in addition $E\left(X_{1}^{2}\right)<\infty$. Then $S_{n} / n \rightarrow \mu$ in L^{2} (and hence also in probability).

Proof. This is left as an exercise.
Theorem 2.5. (Strong law of large numbers I.) Let X_{1}, X_{2}, \ldots be independent with $\mu=$ $E\left(X_{k}\right)$ for all k. Suppose in addition that for some constant $C, E\left(X_{k}^{4}\right) \leq C$ for all k. Then $S_{n} / n \rightarrow \mu$ almost surely.

Proof. Without loss of generality, we can assume that $\mu=0$ (otherwise replace X_{k} by $\left.X_{k}-\mu\right)$. By independence and the fact that $E\left(X_{i}\right)=0$,

$$
E\left(X_{i} X_{j}^{3}\right)=E\left(X_{i} X_{j} X_{k}^{2}\right)=E\left(X_{i} X_{j} X_{k} X_{l}\right)=0
$$

for distinct i, j, k, l. Hence

$$
\begin{aligned}
E\left(S_{n}^{4}\right) & =E\left(\left(X_{1}+X_{2}+\cdots+X_{n}\right)^{4}\right) \\
& =E\left(\sum_{k=1}^{n} X_{k}^{4}+3 \sum_{i=1}^{n} \sum_{j \neq i} X_{i}^{2} X_{j}^{2}\right) .
\end{aligned}
$$

By Jensen's inequality, $E\left(X_{i}^{2}\right)^{2} \leq E\left(\left(X_{i}^{2}\right)^{2}\right)=E\left(X_{i}^{4}\right) \leq C$. By independence $E\left(X_{i}^{2} X_{j}^{2}\right)=$ $E\left(X_{i}^{2}\right) E\left(X_{j}\right)^{2} \leq C$ for $i \neq j$. Putting these together yields

$$
E\left(S_{n}^{4}\right) \leq n C+3 n(n-1) C \leq S C n^{2}
$$

hence

$$
E\left(\sum_{n}\left(S_{n} / n\right)^{4}\right) \leq 3 C \sum_{n} n^{-2}<\infty
$$

which implies that $\sum_{n}\left(S_{n} / n\right)^{4}<\infty$ almost surely and hence $S_{n} / n \rightarrow 0$ almost surely.

Note that there is no assumption in Theorem 2.5 that the X_{k} are i.i.d. The assumption that $E\left(X_{k}^{4}\right)<\infty$ is made purely because it allows a much simpler proof - the strong law is true without this assumption. Indeed the best version of the strong law in the i.i.d case is the following:

Theorem 2.6. (Strong law of large numbers II.) Let X_{1}, X_{2}, .. be i.i.d. with $\mu=E\left(X_{1}\right)$. Then $S_{n} / n \rightarrow \mu$ almost surely and in L^{1}

The proof requires certain (backward) martingale techniques as well as making use of uniform integrability properties and Kolmogorov's 0-1 law

3. Central limit theorem

Theorem 3.1. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mu=E\left(X_{1}\right)$ and $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)<\infty$ and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and

$$
Z_{n}=\frac{S_{n}-\mu n}{\sqrt{\sigma^{2} n}}
$$

Then as $n \rightarrow \infty$,

$$
P\left(Z_{n} \leq x\right) \rightarrow \Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

(i.e. $Z_{n} \rightarrow N(0,1)$ in distribution.)

Proof. Assume without loss of generality that $\mu=0$ (otherwise replace X_{k} by $X_{k}-\mu$). Let $\phi_{Z_{n}}, \phi_{S_{n}}$ and ϕ_{X} denote the characteristic functions of the respective random variables. By Lemma 2.1, for small θ

$$
\phi_{X}(\theta)=1-\frac{1}{2} \sigma^{2} \theta^{2}+o\left(\theta^{2}\right) .
$$

Therefore

$$
\begin{aligned}
\phi_{Z_{n}}(\theta) & =\phi_{S_{n}}\left(\theta / \sqrt{\sigma^{2} n}\right)=\phi_{X}\left(\theta / \sqrt{\sigma^{2} n}\right)^{n} \\
& =\left(1-\frac{\theta^{2}}{2 n}+o\left(\frac{1}{n}\right)\right)^{n} \rightarrow e^{-\theta^{2} / 2}
\end{aligned}
$$

which is the characteristic function of $N(0,1)$.

The central limit theorem is behind nearly all normal approximation results: for example, the normal approximations to the binomial and Poisson distributions are both applications of it.

One striking feature of the proof is that it involves only a very simple analysis of the asymptotic expansion of characteristic functions up to the 2 nd order term. For this reason, the result lends itself to many possible variations and extensions.

Example 3.1. Here, we look at a situation where a large number of independent but noni.i.d random variables are summed.

Let E_{1}, E_{2}, \ldots be a sequence of independent events with $P\left(E_{n}\right)=1 / n$. Let

$$
S_{n}=I_{E_{1}}+I_{E_{2}}+\cdots+I_{E_{n}} .
$$

Then

$$
\begin{aligned}
E\left(S_{n}\right) & =\sum_{k=1}^{n} \frac{1}{k} \sim \log n \\
\operatorname{Var}\left(S_{n}\right) & =\sum_{k=1}^{n} \frac{1}{k}\left(1-\frac{1}{k}\right) \sim \log n .
\end{aligned}
$$

It is therefore natural to expect

$$
Z_{n}=\frac{S_{n}-\log n}{\sqrt{\log n}}
$$

to converge in distribution to $N(0,1)$. We have

$$
\phi_{Z_{n}}(\theta)=e^{-i \theta \sqrt{\log n}} \phi_{S_{n}}(\theta / \sqrt{\log n})
$$

where

$$
\phi_{S_{n}}(t)=\prod_{k=1}^{n} \phi_{I_{k}}(t)=\prod_{k=1}^{n}\left(1-\frac{1}{k}+\frac{1}{k} e^{i t}\right) .
$$

Putting $t=\theta / \sqrt{n}$ and letting $n \rightarrow \infty$ (i.e. $t \rightarrow 0$),

$$
\begin{aligned}
\log \phi_{Z_{n}}(\theta) & =-i t \log n+\sum_{k=1}^{n} \log \left(1+\frac{1}{k}\left(e^{i t}-1\right)\right) \\
& =-i t \log n+\sum_{k=1}^{n} \log \left(1+\frac{1}{k}\left(i t-\frac{1}{2} t^{2}+o\left(t^{2}\right)\right)\right) \\
& =-i t \log n+\sum_{k=1}^{n}\left\{\frac{1}{k}\left(i t-\frac{1}{2} t^{2}+o\left(t^{2}\right)\right)+O\left(t^{2} / k^{2}\right)\right\} \\
& \sim-i t \log n+\left(i t-\frac{1}{2} t^{2}+o\left(t^{2}\right)\right) \log n+O\left(t^{2}\right) \\
& \sim-\frac{1}{2} \theta^{2}+o(1) \rightarrow-\frac{1}{2} \theta^{2} .
\end{aligned}
$$

