
Lecture 7: Sequences of independent random variables

1. Kolmogorov 0-1 law

Let X1, X2, . . . be a sequence of independent random variables on (Ω,F , P ) with asso-
ciated tail σ-algebra T as defined in the last lecture. As mentioned earlier, many important
events belong to T . For example, one such class of events of interest in the context of the
law of large numbers concerns the limiting behaviour of

X1 + X2 + · · ·+ Xn

n
.

Theorem 1.1. (Kolmogorov 0-1 law.) Let X1, X2, . . . be a sequence of independent random
variables with σ-algebra T . Then for any event E ∈ T , either P (E) = 1 or P (E) = 0.

Proof. (Sketch) Let Fn = σ(X1, X2, . . . , Xn) and Tn = σ(Xn+1, Xn+2, . . .). Then by the
independence of the Xk, Fn and Tn are independent and since T ⊂ Tn, Fn and T are
independent. Moreover

⋃

n Fn and T are independent. Next let F∞ = σ(X1, X2, . . .).
Because F∞ = σ(

⋃

n Fn), F∞ and T are independent. (This last point is not trivial and
requires more rigorous treatment to arrive at a proper proof, as

⋃

n Fn is not a σ-algebra
in general.) But since T ⊂ F∞, T is independent of itself! Therefore, for E ∈ T , P (E) =
P (E

⋂

E) = P (E)2 and the result follows.

Exercise: Show that any T -measureable random variable Z must be (almost surely) trivial
(i.e. deterministic), in the sense that for some constant c, P (Z = c) = 1.

For this reason σ-algebras with the 0-1 property are called trivial.

Kolmogorov’s 0-1 law shows that for independent sequences (Xn), either

P

(

lim
n→∞

X1 + X2 + · · ·+ Xn

n
exists

)

= 0

or P

(

lim
n→∞

X1 + X2 + · · ·+ Xn

n
exists

)

= 1

and moreover, if the limit does exist, it must be constant. There are many other similar
types of 0-1 laws but although they say that for a certain event E, P (E) = 0 or 1, they
don’t say which and deciding whether P (E) = 0 or 1 is often a very difficult problem and
many such problems remain open. In the case of

X1 + X2 + · · · + Xn

n

the question is settled by the strong law of large numbers.

2. Law of large numbers

First, a very useful preliminary result which involves a nice application of the domi-
nated convergence theorem.

Lemma 2.1. Let X be a random variable with E(X) = 0 and E(|X|n) < ∞ for some n ≥ 1.
Then the following asymptotic expansion holds for the characteristic function φ of X:

φ(θ) =

n
∑

k=1

(iθ)kE(Xk)

k!
+ o(θn) as θ → 0.
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Proof. For n ≥ 0

Rn(x) = eix −
n
∑

k=1

xk

k!
.

Then R0(x) = eix − 1 so |R0(x)| ≤ 2. But also R0(x) =
∫ x

0
ieiy dy, so |R0(x)| ≤ |x|. Putting

these together gives
|R0(x)| ≤ min(2, |x|).

Next, note that for n ≥ 1

Rn(x) =

∫ x

0

iRn−1(y) dy

so by induction

|Rn(x)| ≤ min

(

2|x|n
n!

,
|x|n+1

(n + 1)!

)

.

Since φ(θ) = E(eiθX), we have

φ(θ) =
n
∑

k=1

(iθ)kE(Xk)

k!
+ E(Rn(θX)).

It remains to prove that E(Rn(θX)) ∼ o(θn).

|E(Rn(θX))| ≤ E(|Rn(θX)|) ≤ θnE

[

min

(

2|X|n
n!

,
|θX|n+1

(n + 1)!

)]

.

The integrand inside E(·) on the right-hand side above is bounded above by 2|X|n/n! which
has finite expectation by assumption and tends to 0 as θ → 0. Hence by dominated conver-
gence

|E(Rn(θX))|
θn

≤ E

[

min

(

2|X|n
n!

,
|θX|n+1

(n + 1)!

)]

→ 0

as θ → 0, or in other words, E(Rn(θX)) ∼ o(θn).

Recall from Proposition 2.4 that Xn → X in probability implies Xn → X in distribu-
tion. The following is a converse of this result in the case where the limit X is a constant.

Lemma 2.2. Suppose that Xn → c in distribution, where c is a constant. Then Xn → c in
probability.

Proof. This is left as an exercise.

Theorem 2.3. (Weak law of large numbers I.) Let X1, X2, . . . be independent and identically
distributed with µ = E(X1) exists and is finite. Let Sn = X1 + X2 + · · ·+ Xn. Then

Sn

n
→ µ in distribution (2.1a)

Sn

n
→ µ in probability. (2.1b)

Proof. We need only prove (2.1a) because (2.1b) follows from (2.1a) by Lemma 2.2. Let φX

be the common characteristic function of the Xk and let φn be the characteristic function of
Sn/n. Then

φn(θ) =

n
∏

k=1

E(eiθXk/n) = φX(θ/n)n.
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As n → ∞, Lemma 2.1 gives

φX(θ/n) = 1 + iθµ/n + o(1/n)

so that
φn(θ) = (1 + iθµ/n + o(1/n))n → eiθµ

as n → ∞. But eiθµ is the characteristic function of the constant µ.

Theorem 2.4. (Weak law of large numbers II.) Let X1, X2, . . . and Sn be as before. Suppose
that in addition E(X2

1 ) < ∞. Then Sn/n → µ in L2 (and hence also in probability).

Proof. This is left as an exercise.

Theorem 2.5. (Strong law of large numbers I.) Let X1, X2, . . . be independent with µ =
E(Xk) for all k. Suppose in addition that for some constant C, E(X 4

k) ≤ C for all k. Then
Sn/n → µ almost surely.

Proof. Without loss of generality, we can assume that µ = 0 (otherwise replace Xk by
Xk − µ). By independence and the fact that E(Xi) = 0,

E(XiX
3
j ) = E(XiXjX

2
k) = E(XiXjXkXl) = 0

for distinct i, j, k, l. Hence

E(S4
n) = E((X1 + X2 + · · ·+ Xn)4)

= E

(

n
∑

k=1

X4
k + 3

n
∑

i=1

∑

j 6=i

X2
i X2

j

)

.

By Jensen’s inequality, E(X2
i )2 ≤ E((X2

i )2) = E(X4
i ) ≤ C. By independence E(X2

i X2
j ) =

E(X2
i )E(Xj)

2 ≤ C for i 6= j. Putting these together yields

E(S4
n) ≤ nC + 3n(n − 1)C ≤ SCn2

hence

E

(

∑

n

(Sn/n)4

)

≤ 3C
∑

n

n−2 < ∞

which implies that
∑

n(Sn/n)4 < ∞ almost surely and hence Sn/n → 0 almost surely.

Note that there is no assumption in Theorem 2.5 that the Xk are i.i.d. The assumption that
E(X4

k) < ∞ is made purely because it allows a much simpler proof - the strong law is true
without this assumption. Indeed the best version of the strong law in the i.i.d case is the
following:

Theorem 2.6. (Strong law of large numbers II.) Let X1, X2, . . . be i.i.d. with µ = E(X1).
Then Sn/n → µ almost surely and in L1

The proof requires certain (backward) martingale techniques as well as making use of
uniform integrability properties and Kolmogorov’s 0-1 law

.
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3. Central limit theorem

Theorem 3.1. Let X1, X2, . . . be i.i.d. with µ = E(X1) and σ2 = Var(X1) < ∞ and let
Sn = X1 + X2 + · · · + Xn and

Zn =
Sn − µn√

σ2n
.

Then as n → ∞,

P (Zn ≤ x) → Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2 dy.

(i.e. Zn → N(0, 1) in distribution.)

Proof. Assume without loss of generality that µ = 0 (otherwise replace Xk by Xk − µ). Let
φZn

, φSn
and φX denote the characteristic functions of the respective random variables. By

Lemma 2.1, for small θ

φX(θ) = 1 − 1

2
σ2θ2 + o(θ2).

Therefore

φZn
(θ) = φSn

(θ/
√

σ2n) = φX(θ/
√

σ2n)n

=

(

1 − θ2

2n
+ o

(

1

n

))n

→ e−θ2/2

which is the characteristic function of N(0, 1).

The central limit theorem is behind nearly all normal approximation results: for ex-
ample, the normal approximations to the binomial and Poisson distributions are both appli-
cations of it.

One striking feature of the proof is that it involves only a very simple analysis of the
asymptotic expansion of characteristic functions up to the 2nd order term. For this reason,
the result lends itself to many possible variations and extensions.

Example 3.1. Here, we look at a situation where a large number of independent but non-
i.i.d random variables are summed.

Let E1, E2, . . . be a sequence of independent events with P (En) = 1/n. Let

Sn = IE1
+ IE2

+ · · ·+ IEn
.

Then

E(Sn) =

n
∑

k=1

1

k
∼ log n

Var(Sn) =

n
∑

k=1

1

k

(

1 − 1

k

)

∼ log n.

It is therefore natural to expect

Zn =
Sn − log n√

log n
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to converge in distribution to N(0, 1). We have

φZn
(θ) = e−iθ

√
log nφSn

(θ/
√

log n)

where

φSn
(t) =

n
∏

k=1

φIk
(t) =

n
∏

k=1

(

1 − 1

k
+

1

k
eit

)

.

Putting t = θ/
√

n and letting n → ∞ (i.e. t → 0),

log φZn
(θ) = −it log n +

n
∑

k=1

log

(

1 +
1

k
(eit − 1)

)

= −it log n +

n
∑

k=1

log

(

1 +
1

k

(

it − 1

2
t2 + o(t2)

))

= −it log n +

n
∑

k=1

{

1

k

(

it − 1

2
t2 + o(t2)

)

+ O(t2/k2)

}

∼ −it log n +

(

it − 1

2
t2 + o(t2)

)

log n + O(t2)

∼ −1

2
θ2 + o(1) → −1

2
θ2.
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